

David B. Fossan 1934-2003

Nuclear Chirality

Basic symmetries in nuclear structure

Rotational and space inversion invariance:

- result from the isotropy of space,
- as a consequence spin and parity are good quantum numbers for nuclear states.

Time reversal invariance:

- result from the reversibility of motion in time.

Notation:

- $R(\omega)$ -rotation,
- P -space inversion,
- T –time reversal.

Spontaneous symmetry breaking or nuclear Jahn-Teller effect

The violation of any symmetry in the intrinsic reference frame has a profound influence on the structure of the wavefunction in the laboratory reference frame and therefore is manifest as a distinct feature in excitation modes.

Single-particle configurations in triaxial nuclei may result in three perpendicular angular momenta.

Space inversion vs time reversal:

Space inversion operation represented by $m{P}$ is linear:

$$P(a|\psi_1\rangle+b|\psi_2\rangle)=aP|\psi_1\rangle+bP|\psi_2\rangle.$$

For the unitary operator $m{P}$:

$$P^2 = 1$$
, $P^{-1} = P = P^{\dagger}$.

Eigenstates of $m{P}$ with eigenvalues $\pi=\pm 1$ can be formed:

$$P1/\sqrt{2}(| \bigcirc \rangle + | \bigcirc \rangle) = 1/\sqrt{2}(| \bigcirc \rangle + | \bigcirc \rangle),$$

 $P1/\sqrt{2}(| \bigcirc \rangle - | \bigcirc \rangle) = -1/\sqrt{2}(| \bigcirc \rangle - | \bigcirc \rangle).$

If [P, H] = 0, parity is a good quantum number for nuclear states.

Space inversion vs time reversal:

Time reversal operation represented by $m{T}$ is antilinear:

$$T(a|\psi_1\rangle+b|\psi_2\rangle)=a^*T|\psi_1\rangle+b^*T|\psi_2\rangle.$$

For the antiunitary operator $oldsymbol{T}$:

$$T^{2} = (-1)^{2I} = (-1)^{A}$$
, I -spin, A -number of fermions.

Eigenstates of $oldsymbol{T}$ can not be defined.

For the nuclear hamiltonian which is invariant under time reversal the wave functions for physical states are required to be invariant under the operator $O=T\ R_{y}(\pi)$.

T denotes time reversal.

 $R_y(\pi)$ denotes rotation by 180° around the axis perpendicular to the quantization axis.

With these definitions the O operator is a complex conjugation of expansion coefficients for wave functions in $|IM\rangle$ basis.

For the planar states of three angular momenta:

$$O|IP\rangle = TR_{V}(\pi)|IP\rangle = |IP\rangle$$
.

$$TR_{y}(\pi)$$
 $\rangle = T$

For the right- and left-handed states of three mutually orthogonal angular momenta:

$$O|IR\rangle = TR_y(\pi)|IR\rangle = |IL\rangle$$
,
 $O|IL\rangle = TR_y(\pi)|IL\rangle = |IR\rangle$.

$$TR_{y}(\pi)$$
 $\Rightarrow T$

For $|IR\rangle$ and $|IL\rangle$ quantum mechanical analysis for a two level system directly applies.

(See for example Feynman lectures on Physics.)

Physical states invariant under O are:

$$\left|I+\right\rangle = \frac{1}{\sqrt{2}}(\left|IR\right\rangle + \left|IL\right\rangle),$$

$$\left| I - \right\rangle = \frac{\iota}{\sqrt{2}} (\left| IR \right\rangle - \left| IL \right\rangle),$$

Experimental evidence for doublet bands:

Systematics of partner bands in odd-odd A~130 nuclei.

Angular correlation (DCO) measurement for 132 La.

$$R_{DCO}(294 \text{ keV M1/E2-686 keV E2}) = 0.46(6)$$

 $R_{DCO}(294 \text{ keV M1/E2-689 keV ?}) = 1.4(2)$

Polarization measurements in 132Cs

[G Rainovski et al., PRC 68, (2003) 024318].

$$P = \frac{1}{Q(E_{\gamma})} \frac{N_{\nu} - N_{h}}{N_{\nu} + N_{h}}$$

 $Q(E_y)$ – P.M. Jones *et al.*, NIM A 362 (1995) 556

Main

Results of the Gammasphere GS2K009 experiment.

The unique parity argument gives model independent configuration assignment for partner bands!

- electromagnetic operators are one-body operators;
- matrix elements for M1 and E2 operators are non-zero between single particle orbitals with the same parity only;
- in odd-odd nuclei M1 and E2 transitions are strongly hindered between configurations involving unique- and normal-parity valence single particle orbitals, despite of the same resulting parity for observed bands;
- the main bands are known to be built on unique-parity orbitals;
- the observation of M1/E2 links yields the same configuration for the side bands as for the main bands, since no other unique parity orbitals are near the Fermi level.

Unique parity configuration assignments for the main band from magnetic moment measurements.

Doublet bands in odd-even 135Nd near 134Pr

S. Zhu et al., PRL 91(2003) 132501.

Systematics of odd-odd Rh isotopes near A~104

C. Vaman PRL92 (2004) 032501, P. Joshi et al., PLB in print.

See posters of P.Joshi and C. Vaman

¹⁰²Rh

¹⁰⁴Rh

¹⁰⁶Rh

Systematics of odd-odd Rh isotopes near A~104

C. Vaman PRL92 (2004) 032501, P. Joshi et al., PLB in print.

See posters of P.Joshi and C. Vaman

Doublet bands in 105Rh

J. Timar et al., submitted to PLB.

Doublet bands in odd-even 103Rh and 105Rh near 104Rh

C. Vaman et al., J. Timar et al., submitted to PLB.

Electromagnetic properties – pronounced staggering in experimental B(M1)/B(E2) and B(M1)_{in} / B(M1)_{out} ratios as a function of spin [T.Koike et al. PRC 67 (2003) 044319].

Electromagnetic properties – unexpected B(M1)/B(E2) behavior for ¹³⁴Pr and heavier N=75 isotones.

What have we learned from chirality so far?

Chirality is a general phenomenon in triaxial nuclei:

- two mass regions identified up to date,
- partner bands in odd-odd and odd-A nuclei.

Energy separation vs. spin trend understood:

- planar components at the low spin,
- degenerate levels at the medium spin,
- Coriolis alignment at the high spin.

The smoking gun has been identified:

three fingerprints currently established for chirality in odd-odd triaxial nuclei:

- near degenerate doublet ∆I=1 bands for a range of spin I;
- S(I)=[E(I)-E(I-1)]/2I independent of spin I;
- chiral symmetry restoration selection rules for M1 and E2 transitions vs. spin resulting in staggering of the absolute and relative transition strengths.

Based on the above fingerprints ¹⁰⁴Rh provides the best example of chiral bands observed up to date.

√ doubling of states

 $\checkmark S(I)$ independent of I

 $\checkmark B(M1), B(E2)$ staggering

C. Vaman et al. PRL 92(2004)032501

A new limit of particle rotor model for triaxial nuclei has been identified:

For irrotational flow moment of inertia there are two special cases for which two out of three moments are equal:

axial symmetry
$$for \ \gamma=0^o \ (prolate \ shapes)$$

$$J_s=J_i=J_0 \ J_l=0$$

$$for \ \gamma=60^o \ (oblate \ shapes)$$

$$J_l=J_i=J_0 \ J_s=0$$

$$triaxiality$$

$$for \ \gamma=30^o \ (triaxial \ shapes)$$

$$J_l=J_s=J_0 \ J_i=4J_0$$

For triaxial shapes at $\gamma = 30^{\circ}$ the rotor hamiltonian has a very similar structure to the hamiltonian for axially symmetric shapes. The intermediate axis becomes an effective symmetry axis.

New symmetry of particle rotor model for odd-odd chiral nuclei: results in selection rules and unique predictions for electromagnetic transition rates without a need for calculation.

Conditions for chirality coincide with conditions for wobblers in the model Hamiltonian discussed in the next talk.

Chriality, open questions:

- electromagnetic properties, transition rates,
- when the tunneling between the two handedness is appreciable and in which conditions the tunneling is expected,
- the criterion for the chiral bands: the degeneracy of doublet states as compared to rotational frequency.